IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures

نویسندگان

  • Lasse Espeholt
  • Hubert Soyer
  • Rémi Munos
  • Karen Simonyan
  • Volodymyr Mnih
  • Tom Ward
  • Yotam Doron
  • Vlad Firoiu
  • Tim Harley
  • Iain Dunning
  • Shane Legg
  • Koray Kavukcuoglu
چکیده

In this work we aim to solve a large collection of tasks using a single reinforcement learning agent with a single set of parameters. A key challenge is to handle the increased amount of data and extended training time, which is already a problem in single task learning. We have developed a new distributed agent IMPALA (Importance-Weighted Actor Learner Architecture) that can scale to thousands of machines and achieve a throughput rate of 250,000 frames per second. We achieve stable learning at high throughput by combining decoupled acting and learning with a novel off-policy correction method called V-trace, which was critical for achieving learning stability. We demonstrate the effectiveness of IMPALA for multi-task reinforcement learning on DMLab-30 (a set of 30 tasks from the DeepMind Lab environment (Beattie et al., 2016)) and Atari-57 (all available Atari games in Arcade Learning Environment (Bellemare et al., 2013a)). Our results show that IMPALA is able to achieve better performance than previous agents, use less data and crucially exhibits positive transfer between tasks as a result of its multi-task approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Policy Networks with Two-Stage Training for Dialogue Systems

In this paper, we propose to use deep policy networks which are trained with an advantage actor-critic method for statistically optimised dialogue systems. First, we show that, on summary state and action spaces, deep Reinforcement Learning (RL) outperforms Gaussian Processes methods. Summary state and action spaces lead to good performance but require pre-engineering effort, RL knowledge, and ...

متن کامل

Connecting Generative Adversarial Networks and Actor-Critic Methods

Both generative adversarial networks (GAN) in unsupervised learning and actorcritic methods in reinforcement learning (RL) have gained a reputation for being difficult to optimize. Practitioners in both fields have amassed a large number of strategies to mitigate these instabilities and improve training. Here we show that GANs can be viewed as actor-critic methods in an environment where the ac...

متن کامل

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods t...

متن کامل

Reinforcement Learning for Learning Rate Control

Stochastic gradient descent (SGD), which updates the model parameters by adding a local gradient times a learning rate at each step, is widely used in model training of machine learning algorithms such as neural networks. It is observed that the models trained by SGD are sensitive to learning rates and good learning rates are problem specific. We propose an algorithm to automatically learn lear...

متن کامل

Sample Efficient Actor-Critic with Experience Replay

This paper presents an actor-critic deep reinforcement learning agent with experience replay that is stable, sample efficient, and performs remarkably well on challenging environments, including the discrete 57-game Atari domain and several continuous control problems. To achieve this, the paper introduces several innovations, including truncated importance sampling with bias correction, stocha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.01561  شماره 

صفحات  -

تاریخ انتشار 2018